Algorithms for Solving the Dual Problem for $A v=b$ with Varying Norms*

Michail S. Boroushy

Communicated hy E. W' Chime
Received April 2, 1474

1. Nimoduction

Let V be a linear space, X a normed linear space, and $4: 1 \cdot \rightarrow X$ a lincar transformation from V into X. Also. let $h \in X \sim R(.4)$ where $R(A)$ denotes the range of A. The equation $A t=b$ hus has mos solution and we thall cu! the problen of finding a r in V such that

$$
' b-A \hat{i} \cdot \quad: \quad b-A r
$$

for all r in V the primary prohlem. A solution of the primary prohlem shall be called a best approximate solution of $A t$. b. Phelps [6] has shown that of X is a Barach space having a predual (i.e.. there exists a normed linear space Y suci, that the dual space of $Y, \gamma^{*}=. Y$ and if $R(A)$ is wak * closed then the nrimary problem has a solution. In fact (see [?]). if X is wirth comed. i e..

$$
\frac{1}{2}(x+y)<1 \quad \text { if } \quad x=y \mid-1 \text { and } x f
$$

then the primary problem has at most one solution. The dual problem. which always has a solution (ace $[2,4]$) consists of tinding a hounded linear runctional f in

$$
R(A)^{\prime}-\left\{f^{-} x^{*} f(x)=0 \text { tor all } x=R(A) ;\right.
$$

such that $f_{1}=1$ and

$$
\dot{f}(b)-\max _{\substack{\prime \in R(A)^{1} \\ j}} f(f) .
$$

[^0]Since in certain instances the solution of the primary problem follows from the solution of the dual problem we shall investigate algorithms for solving the dual problem. In fact if $\left(\|\cdot\|_{n}\right)$ is a sequence of strictly convex norms defined on a normed linear space X and $\|\cdot\|$ is a norm on X such that $\lim _{n \rightarrow \infty}\|a\|_{n}=\|a\|$ for all a in X, then solutions of the dual problem with respect to $\|\cdot\|$ are generated as limit points of sequences of approximate solutions of the dual problems with respect to $\|\cdot\|_{n}$.

2. Dual Vectors

If X is a normed linear space and $x \in X$ then for $f \in X^{*}$ we write $f(x)=$ (x / f). The dual norm $\|\cdot\|^{\prime}$ of a norm $\|\cdot\|$ on X is defined to be the usual norm on X^{*}; i.e., if $f \in X^{*}$ then

$$
\|f\|^{\prime}=\sup _{\| x \mid=1}|(x / f)| .
$$

Furthermore, if $f \in X^{*} \sim\{0\}$ and $x \in X$, then x is called a $\|\cdot\|$-dual vector for f if $\|x\|=1$ and

$$
(x / f)=\max _{\substack{z \in X \\\|z\|=1}}|(z / f)|=\|f\|^{\prime}
$$

Let X be a Banach space and let $\phi: X \rightarrow X^{* *}$ be the canonical embedding of X in $X^{* *}$, i.e., $\phi(x)=\hat{x}$ where $\hat{x}(f)=f(x)$ for all f in X^{*}. This mapping enables us to identify X with a subspace of $X^{* *}$ and will be used in the following theorem.

Theorem 1. (i) If X is a Banach space having a predual M, then each $f \in M \sim\{0\}$ has a dual vector in X.
(ii) If X is a strictly convex Banach space having a predual M, then each $f \in M \sim\{0\}$ has a unique dual vector in X.
(iii) If $A: V \rightarrow X$ is a linear transformation from a linear space V into a normed linear space X with strictly convex dual and $b \in X \sim R(A)$ then the dual problem has a unique solution.
(iv) Let V be a linear space, X a normed linear space, $A: V \rightarrow X$ a linear transformation, and assume $b \in X \sim R(A)$.
(a) If the primary problem has a solution and if \hat{f} is a solution of the dual problem, then there exists a dual vector \hat{f}^{\prime} for \hat{f} such that

$$
A v=b-(b / \hat{f}) \hat{f}^{\prime}
$$

is consistent.
(b) If \hat{f} is a solution of the dual problem and \hat{f}^{\prime} is any dual vector for \hat{f} such that

$$
A v=b-(b / \hat{f}) \hat{f}^{\prime}
$$

is consistent, then every solution is a solution of the primary problem.
Proof. See [1].

3. The Algorithms

Theorem 2. Let V be a linear space, X a finite-dimensional linear space with a sequence $\left(\|\cdot\|_{n}\right.$) of strictly convex norms and a norm $\|\cdot\|$. Assume that for each a in $X \lim _{n \rightarrow \infty}\|a\|_{n}=\|a\|$, and let $A: V \rightarrow X$ be a $1-1$ linear transformation such that $b \in X \sim R(A)$. Then the algorithm below generates a sequence $\left(\hat{f}_{n}\right)$ with the following properties:
(1) $\left(\hat{f}_{n}\right)$ has at least one limit point.
(2) Every limit point of $\left(\hat{f}_{n}\right)$ is a solution of the $\|\cdot\|$-dual problem.
(3) If \hat{f}_{n}^{\prime} is the $\|\cdot\|_{n}$-dual vector to \hat{f}_{n}, then $\left(b-\left(b \mid \hat{f}_{n}\right) \hat{f}_{n}^{\prime}\right)$ has $a\|\cdot\|$ limit point and every $\|\cdot\|$ limit point is of the form $b-(b / \hat{f}) \hat{f}^{\prime}$ where \hat{f} is a solution of the $\|\cdot\|$-dual problem and f^{\prime} is a $\|\cdot\|$-dual vector to \hat{f}. Furthermore $A v=b-(b \mid \hat{f}) \hat{f}^{\prime}$ has a unique solution which is a best $\|\cdot\|$-approximate solution to $A v=b$.

Step 0. Select a fixed basis $B=\left\{g_{1}, \ldots, g_{k}\right\}$ for $\{R(A) \cup b\}^{\perp}$ and defne $F: X \rightarrow\{R(A) \cup b\}^{\perp}$ by $F(x)=\sum_{j=1}^{k}\left(\overline{x / g_{j}}\right) g_{j}$.

Step 1. Set $i=0, n=1$ and choose $f_{0} \in R(A)^{\perp}$ so that $\left\|f_{0}\right\|_{n}^{\prime}=1$ and $\left(b / f_{0}\right)>0$.

Step 2. Compute the $\|\cdot\|_{n}$-dual vector of f_{i}, call it $f_{i}^{\prime n}$.
Step 3. Compute $h_{i}=F\left(f_{i}^{\prime n}\right)$.
Step 4. If $\left\|h_{i}\right\|^{\prime} \leqslant 1 / n \operatorname{let} \hat{f}_{n}=f_{i}$, and to to (7). If not, go to (5).
Step 5. Find α_{i} in C (the complex numbers) such that $\left\|f_{i}-\alpha_{i} h_{i}\right\|_{n}^{\prime \prime} \leqslant$ $\left\|f_{i}-\lambda h_{i}\right\|_{n}^{\prime}$ for all λ in C.

Step 6. Let $f_{i+1}=\left(f_{i}-\alpha_{i} h_{i}\right) /\left(\left\|f_{i}-\alpha_{i} h_{i}\right\|_{n}^{\prime}\right), i=i+1$ and go to (2).
Step 7. Let $\hat{f}_{n}^{\prime}=f_{i}^{\prime n}$.
Step 8. Let $i=0, f_{i}=\hat{f}_{n}\left\|\hat{f}_{n}\right\|_{n+1}^{\prime}, n=n+1$, and go to (2).
Proof (1). Since $\operatorname{dim}\left(X^{*}\right)<\infty$ there is a constant $k>0$ such that $k\left\|\hat{f}_{n}\right\|^{\prime} \leqslant\left\|\hat{f}_{n}\right\|_{n}^{\prime}=1$ for all n sufficiently large. To see that the same k works for all large n we observe that given $0<\epsilon<1$ there is an $N>0$ so that for $n \geqslant N,(1-\epsilon)\|a\|^{\prime} \leqslant\|a\|_{n}^{\prime} \leqslant(1+\epsilon)\|a\|^{\prime}$ for all $a \in X^{*}($ see $[5, \mathrm{p} .104])$.

Letting $k=(1-\epsilon)$ yields the results. Therefore $\left\|\hat{f}_{n}\right\|^{\prime} \leqslant 1 / k$ for all sufficiently large n, and $\left(\hat{f}_{n}\right)$ has a $\|\cdot\|^{\prime}$ limit point.
Proof (2). Let \hat{f} be a $\|\cdot\|^{\prime}$ limit point of \hat{f}_{n}. Then there is a subsequence, $\left(\hat{f}_{n_{j}}\right)$, such that $\lim _{j \rightarrow \infty} \hat{f}_{n_{j}}=\hat{f}$. We show that $\left(\hat{f}_{n_{j}}^{\prime}\right)$ has a $\|\cdot\|$ limit point and that every limit point is a $\|\cdot\|$-dual vector of \hat{f}. Since $\left\|\hat{f}_{n_{j}}^{\prime}\right\|_{n_{j}}=1$ for all j, by going to a subsequence if necessary, there is a z in X such that $z=\lim _{j \rightarrow \infty} \hat{f}_{n_{j}}^{\prime}$.

Since $\left(\hat{f}_{n_{j}}^{\prime} / \hat{f}_{n_{j}}^{3}\right)=1$ it follows that

$$
\lim _{j \rightarrow \infty}\left(\hat{f}_{n_{j}}^{\prime} / \hat{f}_{n_{j}}\right)=(z / \hat{f})=1
$$

But

$$
\left\|\hat{f}^{\prime}\right\|=\|z\|=1
$$

(see [5]). Hence z is a $\|\cdot\|$-dual vector to \hat{f}; let $z=\hat{f}^{\prime}$.
Since F is continuous and $\left\|F\left(\hat{f}_{n_{j}}^{\prime}\right)\right\|^{\prime} \leqslant 1 / n_{j}$,

$$
\lim _{j \rightarrow \infty} F\left(\hat{f}_{n_{j}}^{\prime}\right)=F\left(\hat{f}^{\prime}\right)=0 .
$$

But $F\left(\hat{f}^{\prime}\right)=0$ implies \hat{f} is a solution of the $\|\cdot\|$-dual problem This follows from the observation that $F\left(\hat{f}^{\prime}\right)=0$ implies $\hat{f}^{\prime} \in \operatorname{lin}\{R(A) \cup b\}$

Proof (3). Let $B=\operatorname{lin}\{R(A) \cup b\}$. Now $\hat{f}^{\prime} \in B$, which imp ies that there is an $\alpha \in C$ and an $x_{0} \in V$ such that

$$
\alpha b-A x_{0}=(b / \hat{f}) \hat{f}^{\prime}
$$

Since $\hat{f} \in R(A)^{\perp}$,

$$
\left(\alpha b-A x_{0} / \hat{f}\right)=\alpha(b / \hat{f})
$$

and

$$
\begin{aligned}
\left(\alpha b-A x_{0} \mid \hat{f}\right) & =(b / \hat{f})\left(\hat{f}^{\prime} \mid \hat{f}\right) \\
& =(b / \hat{f})
\end{aligned}
$$

Therefore $\alpha=1$ and

$$
A x_{0}=b-(b / \hat{f}) \hat{f}^{\prime}
$$

Now for any $x \in V$,

$$
\begin{aligned}
\|b-A x\| & =\|b-A x\|\|\hat{f}\|^{\prime} \\
& \geqslant|(b-A x / \hat{f})| \\
& =|(b / f \hat{f})| \\
& =\left\|b-A x_{\mathbf{0}}\right\|
\end{aligned}
$$

and x_{0} is a best $\|\cdot\|$-approximate solution to $A v=b$.

The fact that $\left\|h_{i}\right\|^{\prime} \leqslant 1 / n$ is eventually satisfied follows from [1, pp. 11-18] (see Appendix).

In the special case where A is an $m \times n$ matrix the previous algorithm can be modified to obtain a sequence whose limit points are solutions of the primary problem.

Theorem 3. Let $A x=b$ be an overdetermined system of m equations in n unknowns with $\operatorname{rank}(A)=n$. Let $\left(\|\cdot\|_{n}\right)$ be a sequence of strictly convex norms on C^{m}, and suppose there is a norm, $\|\cdot\|$, on C^{m} such that for each a in \mathbb{C}^{m}, $\lim _{n \rightarrow \infty}\|a\|_{n}=\|a\|$. Then the algorithm below generates sequences $\left(\hat{f}_{n}\right)$ and $\left(\hat{x}_{n}\right)$ having the following properties:
(1) $\left(\hat{f}_{n}\right)$ has at least one limit point.
(2) Every limit point of $\left(\hat{f}_{n}\right)$ is a solution to the dual problem with respect to \| • 11 .
(3) $\left(\hat{x}_{n}\right)$ has at least one limit point.
(4) Every limit point of $\left(\hat{x}_{n}\right)$ is a solution to the primary problem with respect to \|! \|.

Steps 0-7. Same as Steps 0-7 in Theorem 2.
Step 8. Find the best l^{2} approximate solution, \hat{x}_{n}, of $A x=b-\left(b / \hat{f}_{n}\right) \hat{f}_{n}^{\prime}$.
Step 9. If $\left\|b-A \hat{x}_{n}\right\|-\left(1 /\left\|f_{n}\right\|\right)\left(b / f_{n}\right)<\epsilon$ for some predetermined $\epsilon>0$, take $\hat{x}_{n}=x^{*}, a\|\cdot\|$-best approximate solution of $A x=\bar{b}$, and $\hat{f}_{n}\left\|\hat{f}_{n}\right\|^{\prime}$ a solution of the $\|\cdot\|$-dual problem. If not, go to (10).

Step 10. Let $i=0, f_{i}=\hat{f}_{n}\left\|\hat{f}_{n}\right\|_{n+1}^{\prime} n=n+1$, and go to (2).
Proof. The first two results follow from Theorem 2. Now

$$
\hat{x}_{n}=\left(A^{T} A\right)^{-1} A^{T}\left(b-\left(b / \hat{f}_{n}\right) \hat{f}_{n}^{\prime}\right)
$$

and by part (3) of Theorem 2 , it follows that by going to a subsequence if necessary $\lim _{n \rightarrow \infty}\left(b-\left(b / \hat{f}_{n}\right) \hat{f}_{n}^{\prime}\right)=b-(b / \hat{f}) \hat{f}^{\prime}$ where \hat{f} is a solution of the $\|\cdot\|$-dual problem and \hat{f}^{\prime} is a $\|\cdot\|$-dual vector to \hat{f}. Let $x^{* *}$ be the solution to $A x=b-(b / \hat{f}) \hat{f}^{\prime}$. Then $x^{* *}$ is a best $\|\cdot\|$-approximate solution of $A x=b$.

Let $\alpha_{n}=b-\left(b \mid \hat{f}_{n}\right) \hat{f}_{n}^{\prime}$ and $\alpha=b-(b \mid \hat{f}) \hat{f}^{\prime}$. Then,

$$
\begin{aligned}
\left\|\hat{x}_{n}-x^{* *}\right\| & =\left\|\left(A^{T} A\right)^{-1} A^{T_{\alpha_{n}}}-\left(A^{T} A\right)^{-1} A^{T} \alpha\right\| \\
& =\left\|\left(A^{T} A\right)^{-1} A^{T}\left(\alpha_{n}-\alpha\right)\right\| \\
& \leqslant\left\|\left(A^{T} A\right)^{-1} A^{T}\right\| \cdot\left\|\alpha_{n}-\alpha\right\|
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left\|\hat{x}_{n}-x^{* *}\right\| \leqslant\left\|\left(A^{T} A\right)^{-1} A^{T}\right\| \lim _{n \rightarrow \infty}\left\|\alpha_{n}-\alpha\right\|=0
$$

With additional assumptions, the algorithm in Theorem 2 can be extended to the case where X has infinite dimension. This is the content of the following theorem.

Theorem 4. Let V be a linear space, X a Banach space with strictly convex norms $\left(\|\cdot\|_{n}\right)$ and a norm $\|\cdot\|$ such that for each a in $X,\|a\| \leqslant\|a\|_{n} n=1,2, \ldots$ and $\lim _{n \rightarrow \infty}\|a\|_{n}=\|a\|$. Furthermore, suppose X has a separable predual Y and $A: V \rightarrow X$ is a 1-1 linear transformation such that $R(A)$ is weak* closed, $R(A)^{\perp} \subset Y, \operatorname{dim}(X / R(A))<\infty$, and $b \in X \sim R(A)$. Then the algorithm of Theorem 2 generates a sequence $\left(\hat{f}_{n}\right)$ with the following properties:
(1) $\left(\hat{f}_{n}\right)$ has $a\|\cdot\|$ limit point.
(2) Every $\|\cdot\|^{\prime}$ limit point of $\left(\hat{f_{n}}\right)$ is a solution to the $\|\cdot\|$-dual problem.
(3) If \hat{f}_{n}^{\prime} is the $\left\|_{:} \cdot\right\|_{n}$-dual vector to \hat{f}_{n}, then $\left(b-\left(b / \hat{f}_{n}\right) \hat{f}_{n}^{\prime}\right)$ has a weak* limit point with respect to $\|\cdot\|$ and every weak* limit point is of the form $b-(b / \hat{f}) \hat{f}^{\prime}$, where \hat{f} is a solution to the $\|\cdot\|$-dual problem and \hat{f}^{\prime} is $a\|\cdot\|$-dual vector to \hat{f}. Furthermore $A v=b-(b \mid \hat{f}) \hat{f}^{\prime}$ has a unique solution which is a best $\|\cdot\|$-approximate solution to $A v=b$.

Proof (1). Since $\operatorname{dim}\left(R(A)^{\perp}\right)<\infty$ there is a $k>0$ so that for sufficiently large $n,\left\|\hat{f}_{n}\right\|^{\prime} \leqslant k\left\|\hat{f}_{n}\right\|_{n}^{\prime}=k$. Therefore there is a subsqeuence $\left(\hat{f}_{n_{i}}\right)$ and an $\hat{f} \in R(A)^{\perp}$ such that $\lim _{i \rightarrow \infty}\left\|\hat{f}_{n_{i}}-\hat{f}\right\|^{\prime}=0$.

Proof (2). Let \hat{f} be a $\|\cdot\|^{\prime}$ limit point of $\left(\hat{f}_{n}\right)$. Then by passing to a subsequence if necessary, we have $\lim _{n \rightarrow \infty}\left\|\hat{f}_{n}-\hat{f}\right\|^{\prime}=0$. Since $\left\|\hat{f}_{n}^{\prime}\right\| \leqslant$ $\left\|\hat{f}_{n}^{\prime}\right\|_{n}=1 n=1,2, \ldots$, by passing to a subsequence if necessary there is a $z \in X,\|z\| \leqslant 1$, such that $\hat{f}_{n}^{\prime} \rightarrow^{w^{*}} z$. We show that z is a $\|\cdot\|$-dual vector to \hat{f}. Now $0 \leqslant|(z / \hat{f})-1| \leqslant\left|(z / \hat{f})-\left(\hat{f}_{n}^{\prime} \mid \hat{f}\right)\right|+\left|\left(\hat{f}_{n}^{\prime} \mid \hat{f}\right)-\left(\hat{f}_{n}^{\prime} \mid \hat{f}_{n}\right)\right| \leqslant \mid(z / \hat{f})-$ $\left(\hat{f}_{n}^{\prime} \mid \hat{f}\right)\left|+\left\|\hat{f}_{n}-\hat{f}\right\|_{n}\left\|\hat{f}_{n}^{\prime}\right\|_{n}=\left|\left(\left(z-\hat{f}_{n}^{\prime}\right) \mid \hat{f}\right)\right|+\left\|\hat{f}_{n}-\hat{f}\right\|_{n}^{\prime} . \quad\right.$ Since $\operatorname{dim}\left(R(A)^{\perp}\right)<\infty$ there is a constant $L>0$ so that $\left\|\hat{f}_{n}-\hat{f}\right\|_{n}^{\prime} \leqslant L\left\|\hat{f}_{n}-\hat{f}\right\|^{\prime}$, for n sufficiently large.

Therefore $0 \leqslant|(z / \hat{f})-1| \leqslant\left|\left(\left(z-\hat{f}_{n}^{\prime}\right) \mid \hat{f}\right)\right|+L\left\|\hat{f}_{n}-\hat{f}\right\|^{\prime}$. It follows that $0 \leqslant|(z / \hat{f})-1| \leqslant \lim _{n \rightarrow \infty}\left|\left(\left(z-\hat{f}_{n}{ }^{\prime}\right) \mid \hat{f}\right)\right|+L \lim _{n \rightarrow \infty}\left\|\hat{f}_{n}-\hat{f}\right\|^{\prime}=0 \quad$ since $\hat{f}_{n}^{\prime} \rightarrow w^{w^{*}} z$ and $\hat{f} \in R(A)^{\perp} \subset Y$. Hence $(z \mid \hat{f})=1$. But $\|\hat{f}\|^{\prime}=1$ and $\|z\| \leqslant 1$ implies that $\|z\|=1$, and therefore z is a $\|\cdot\|$-dual vector, \hat{f}^{\prime}, to \hat{f}. Since F is weak* continuous, $\lim _{n \rightarrow \infty} F\left(\hat{f}_{n}^{\prime}\right)=F\left(\hat{f}^{\prime}\right)$ and \hat{f} is a solution to the $\|\cdot\|$-dual problem.

Proof (3). This follows in a similar manner as the proof of Theorem 2.

Appendix

To show that $\left\|h_{i}\right\|^{\prime} \leqslant 1 / n$ is eventually satisfied in the algorithm we show that for fixed n

$$
\lim _{i \rightarrow \infty} h_{i}=\lim _{i \rightarrow \infty} F\left(f_{i}^{\prime n}\right)=0
$$

Consider therefore the algorithm in Theorem 2 with n fixed, Steps (7), (8) eliminated, and Step (4) modified to read

Step (4). If $h_{i}=0$, stop since f_{i} is a solution of the dual problem. If $h_{i} \neq 0$, go to (5).

Assume that the modified algorithm does not terminate and let $\rho_{i}=\left(b / f_{i}\right)$ and $\rho=(b / f)$ where f is a solution of the dual problem. Since $\rho_{i} \leqslant \rho$, $i=1,2, \ldots$ and

$$
\rho_{i+1}-\rho_{i}=\left(b / f_{i+1}\right)-\left(b / f_{i}\right)=\left(1 /\left|f_{i}-\alpha_{i} h_{i}\right|_{n}^{\prime}-1\right)\left(b / f_{i}\right)>0
$$

it follows that $\left(\rho_{i}\right)$ is a monotone sequence bounded above by ρ (observe that if $h_{i}=F\left(f_{i}^{\prime n}\right) \neq 0$, then there is a scalar α_{i} such that $0<\left\|f_{i}-\alpha_{i} h_{i}\right\|_{n}^{\prime}=$ $\min _{\lambda}\left\|f_{i}-\lambda h_{i}\right\|_{n}^{\prime}<1$). Thus there is a real number σ such that $\lim _{i \rightarrow \infty} \rho_{i}=$ $\sigma \leqslant \rho$.

Suppose $\sigma<\rho$. Since $\left\|f_{i}\right\|_{n}^{\prime}=1, i=1,2, \ldots$ there is a subsequence $\left(f_{i_{m}}\right)$ converging to some f in $R(A)^{\perp}$ which implies $f_{i_{m}}^{\prime} \rightarrow f^{\prime}$. Therefore

$$
\lim _{m \rightarrow \infty}\left\|\sum_{j=1}^{k}\left(f_{i_{m}}^{\prime} / g_{j}\right) g_{j}-\sum_{j=1}^{k}\left(f^{\prime} / g_{j}\right) g_{j}\right\|_{n}^{\prime}=\lim _{m \rightarrow \infty}\left\|h_{i_{m}}-h\right\|_{n}^{k}=0
$$

where $h=F\left(f^{\prime}\right)$. Now $h \neq 0$, for $h=0$ implies f is a solution of the dual problem (if $f \in R(A)^{\perp}$ with $\|f\|_{n}^{\prime}=1$ and $(b / f)>0$ then f is a solution of the dual problem if and only if $F\left(f^{\prime}\right)=0$) and

$$
\sigma=\lim _{m \rightarrow \infty} \rho_{i_{m n}}=\lim _{m \rightarrow \infty}\left(b / f_{i_{m}}\right)=(b / f)=\rho
$$

which is a contradiction. Therefore $\|h\|_{n}^{\prime}=d>0$. Since $h_{i_{m}} \rightarrow h$, it follows that $\left\|h_{i_{m}}\right\|_{n}^{\prime}>d / 2$ for m sufficiently large and

$$
1>\left\|f_{i_{m}}-\alpha_{i_{m}} h_{i_{m}}\right\|_{n}^{\prime}>\left|\alpha_{i_{m}}\right|\left\|h_{i_{m}}\right\|_{n}^{\prime}-1
$$

Therefore $0<\left|\alpha_{i_{m}}\right|<4 / d$ for m sufficiently large and by passing to a subsequence if necessary we have that there exists an $\hat{\alpha}$ so that $\lim _{m \rightarrow \infty} \alpha_{i_{n n}}=\hat{\alpha}$. Now

$$
1=\lim _{m \rightarrow \infty}\left(\rho_{i_{m}} / \rho_{i_{m+1}}\right)=\lim _{m \rightarrow \infty}\left\|f_{i_{m}}-\alpha_{i_{m}} h_{i_{m}}\right\|_{n}^{\prime} \leqslant \lim _{m \rightarrow \infty}\left\|f_{i_{m o}}-\lambda h_{i_{m p}}\right\| \|_{n}^{\prime}
$$

which contradicts the fact that $\min _{\lambda}\|f-\lambda h\|_{n}^{\prime}<1$. Hence $\sigma=\rho$.

If $\left(f_{i_{m}}\right)$ is a convergent subsequence of $\left(f_{i}\right)$ and if $\hat{f}=\lim _{m \rightarrow \infty} f_{i_{m}}$ then $\|\hat{f}\|_{n}^{\prime}=1$ and $(b / f)=\rho$. Therefore f is a solution of the dual problem. If the algorithm terminates at the i th step then $F\left(f_{i}^{\prime}\right)=0$ which implies that f_{i} is a solution of the dual problem.

References

1. M. S. Borowsky, Best Approximate Solutions of $A v=b$. Ph.D. dissertation, Drexel University, June 1973.
2. R. C. Buck, Applications of Duality in Approximation Theory, Approximation of Functions (1965), 27-42.
3. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
4. C. S. Duris, An Algorithm for Solving Overdetermined Linear Equations in the l^{p} Sense, Drexel University, Mathematics Report No. 70-10, 1970.
5. B. R. Kripke, Best Approximation With Respect to Nearby Norms, Numer. Math. 6 (1964), 103-105.
6. R. R. Phelps, Uniqueness of Hahn-Banach Extensions and Unique Best Approximations, Trans. Amer. Math. Soc. 95 (1960), 238-255.

[^0]: - Mucn of this work was a Ph.D. dissertation at Drexel L'niversits. Phiadelphra, Pennsylvania under the direction of Professor Howard Anton. The author also wishes to thank Professors Charles S. Duris and Robert Rusby for the:r valuable assistance.

