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I. IN1TRODUCTION

Let V' be a linecar space, X a normed lineur space, and 4: ' -~ X u hncar
transformation from V into X. Also. lct b= ¥ ~ R(4) where R(A) denotes
the range of A. The equation 4+ = b thus has no solution and we <hall culi
the problerm of finding a r in ¥V such that

b — AT o b — Ar

for all rin V the primary problem. A solution of tire primary nroblem shall be
called a best approximatre solution of Av - b. Phelps [6] has shown that .f X
is a Banach space having a predual (i.c.. there exists a normed linear space ¥
such that the dual space o' ¥, ¥'* = XY)and if R{A)is weak ~ closed then the
primary problem has a solution. In fact (sce [3]). if X is sivicth conrex. te..

Hx +y) <1 f  x = yl1 .- tand x £

then the primary problem has 4t most one solution. The dual problem. which
always has a solution (sce [2,4]) consists of finding a bounded hnear
functional f in

R(A)* — {/e X f(x) = Otorall x= R(A),
such that f, = I and

fib)y - max f(h).

feRLAIE
f !

* Much of thrs work was a Ph.D. disscriation at Drexcl University, Phiradelphia,
Pcnnsylvania under the direction of Professor Howard Antor. The author also wishes to
thank Professors Charles S. Duris and Robert Busby for the:r valuable assistance.
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Since in certain instances the solution of the primary problem follows
from the solution of the dual problem we shall investigate algorithms for
solving the dual problem. In fact if (|| - ||,,) is a sequence of strictly convex
norms defined on a normed linear space X and | - || is a norm on X such that
lim, ..l all, = a| for all ¢ in X, then solutions of the dual problem with
respect to || - || are generated as limit points of sequences of approximate
solutions of the dual problems with respect to || - ||, -

2. DUAL VECTORS

If X is a normed linear space and x € X then for fe X* we write f(x) =
(x/f). The dual norm|| -||" of anorm| - || on X is defined to be the usual norm
on X*; ie., if fe X* then

1Sl = sup {(x/)l.

=1
Furthermore, if f€ X* ~ {0} and x € X, then x is called a || - |-dual vector for
fif| x| = 1and
(x/f) = max |(z[))| = Il/1'
zli=1

Let X be a Banach space and let ¢: X — X** be the canonical embedding
of Xin X** ie., ¢(x) = & where &( f) = f(x) for all fin X*. This mapping
enables us to identify X with a subspace of X** and will be used in the
following theorem.

Tueorem 1. (1) If X is a Banach space having a predual M, then each
fe M ~ {0} has a dual vector in X.

(i) If X is a strictly convex Banach space having a predual M, then each
fe M ~ {0} has a unique dual vector in X.

(i) If A: V — X is a linear transformation from a linear space V into a
normed linear space X with strictly convex dual and b € X ~ R(A) then the
dual problem has a unique solution.

(iv) Let V be a linear space, X a normed linear space, A: V — X a linear
transformation, and assume b € X ~ R(A).

(a) If the primary problem has a solution and if f is a solution of the
dual problem, then there exists a dual vector [’ for f such that

Av="b—GHf

is consistent.
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(b) Iff is a solution of the dual problem and f' is any dual vector for f
such that

Av=">b-—0l)]’
is consistent, then every solution is a solution of the primary problem.

Proof. See |1}

3. THE ALGORITHMS

TueoREM 2. Let V be a linear space, X a finite-dimensional linear space
with a sequence (|| + ||,)) of strictly convex norms and a norm || - ||. Assume thai
for each o in Xlim, .| all, = |al, and let A:V — X be a 1-1 linear
transformation such that b e X ~ R(A). Then the algorithm below generates
a sequence (f,) with the following properties:

(1) ( #.) has at least one limit point.

(2)  Every limit point of (f,) is a solution of the || - ||-dual problem.

(3) Iff, is the || - |l,-dual vector to f, , then (b — (bjf) f,") has a || -]
limit point and every || - || limit point is of the form b — (blf ) f ’ where f is a
solution of the !‘ . AH-dual problem and [’ is a || - |-duai vector to f. Furthermore
Av = b — (blf Y} has a unique solution which is a best || - [-approximate
solution to Av = b.

Step 0. Select a fixed basis B = {gy ,..., gr} Jor {R(A) U b}*+ and define
F: X — {R(A) U b} by F(x) = X1 (*/25) 8; -

Step 1. Seti=0,n =1 and choose fy € R(AY* so that | /1, = 1 and
(blfe) > 0.

Step 2. Compuie the || - ||,~dual vector of f; , call it f;".

Step 3. Compute h; = F(f;").

Step 4. Ifl k) < lnletf, = f,, and to to (7). If not, go to (5).

Step 5. Find o; in C (the complex numbers) such that || f; — ah; |, <
ife — Abgll, for all Xin C.

Step 6. Let fioy = (fi — wh)[(| /i — i |1), i =i+ 1 and go 10 (2).

Step 7. Letf,’ = fi™

Step 8. Leti =0, f; = fofll fullhss, # = n = 1, and go to (2).

Pf*oof (1}.A Since dim(X*) < oo there is a constant k& > 0 such that
kifall <l full, = 1 for all n sufficiently large. To see that the same &k works

for all large n we observe that given 0 < € << 1 there is an N > 0 so that for
nz=N,(1—9glal’ <lal, <+ &l all forall ae X* (see [5, p. 104]).
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Letting k == (1 — ¢) yields the results. Therefore ||f, |’ < 1/k for all
sufficiently large 7, and () has a || - ||’ limit point.

Proof (2). Let fbeal | limit point of f, . Then there is a subsequence,
( fn ), such that lim;., fn — f. We show that ( fn Yhas all - | limit point and
that every limit point is a || - |-dual vector of f. Since I fn lln, =1 for all j,
by going to a subsequence if necessary, there is a z in X such that
z == hmHoo fnf .

Since ( fnj/fnj) = 1 it follows that

lim (fy /[fa) = (lf) = 1.
But )
1=zl =1

(see [5]). Hence z is a || - ||-dual vector to f; let z = f".
Since F is continuous and || F( ﬂj)H' < ln;,

lim F(f;) = F(f") = 0.
joo
But F(f") = 0 implies f is a solution of the || - |-dual problem This follows
from the observation that F(f') = 0 implies 7'e lin {R(4) U b}
Proof (3). Let B = lin{R(4) U b}. Now f’ € B, which imp ies that there
is an o € C and an x; € ¥ such that
ob — Axy = (B/f) f'.
Since f e R(4)*,
(b — Axlf) = o(b/f)

(ab — Ax[f) = @IS If)
= (b/f).

and

Therefore o = 1 and
Ax, = b — (/)"
Now for any xe V,
b — Ax|| = | b — Ax||| fII
> |(b — Ax[f)
= 1@/
=[5 — Ax|l

and x, is a best || - |l-approximate solution to Av = b.
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The fact that || /2, ||' << 1/nis eventually satisfied follows from [1, pp. 11-18]
{see Appendix).

In the special case where A4 is an m X n matrix the previous algorithm
can be modified to obtain a sequence whose limit points are solutions of the
primary problem.

THEOREM 3. Let Ax = b be an overdetermined system of m equations in n
unknowns with rank (A) = n. Let (| - ||,,) be a sequence of strictly convex norms
on C™, and suppose there is a norm, || - ||, on C™ such that for each a in C™,
lim,... | ail, = |l al. Then the algorithm below generates sequences ( f,) and
(%) having the following properties:

(1) (£, has at least one limit point.

(2)  Every limit point of (£,,) is a solution to the dual problem with respect
tol 1.

(3) (%,) has at least one limit point.

(4) FEvery limit point of (£;) is g solution to the primary problem with
respect to | - ||.

Steps 0-7. Same as Steps 0-7 in Theorem 2.
Step 8. Find the best I? approximate solution, %, , of Ax = b — (b/f,) f.'.

Step 9. If ||b— A&, — AN 1) (bify) < e for some predetermined
€ >0, take £, = x*, a || -|-best approximate solution of Ax = b, and
Jul' fn I @ solution of the || - |-dual problem. If not, go to (10}

Step 10. Leti =0, f; :fn/anU;Hrl n=n-+1, and go to (2).

Proof. The first two results follow from Theorem 2. Now
£, = (ATAY AT(b — (B/f) f)

and by part (3) of Theorem 2, it follows that by going to a subsequence if

necessary Hm, ., (b — (B/f) ') = b — (B/f) f' where f is a solution of the

|| - |l-dual problem and f’ is a || - |-dual vector to /. Let x** be the solution to

Ax = b — (b/f)f’. Then x** is a best || - |-approximate solution of 4Ax = 5.
Let o, = b — (b/f,) £/ and o« = b — (b/f) f'. Then,

| £ — x5 | = (AT Aoty — (A7) AT |
= (A7 A A(a, — )]
<[(ATA) AT e, — .
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Therefore,

lim || £, — x** | < [[(A7A) AT || lim || o, — ]| = 0.

With additional assumptions, the algorithm in Theorem 2 can be extended
to the case where X has infinite dimension. This is the content of the following
theorem.

THEOREM 4. Let V be a linear space, X a Banach space with strictly convex
norms (|| - |1,,) and a norm | - || such that for eachain X, || al| <l al.n=1,2,...
and lim,, ., || all, = || al|. Furthermore, suppose X has a separable predual Y
and A: V — X is a 1-1 linear transformation such that R(A) is weak™* closed,
R(A*-CY, dim(X/R(A)) < oo, and be X ~ R(4). Then the algorithm of
Theorem 2 generates a sequence (f,) with the following properties:

() (f) has al -\ limit point.

(2) Every | -\ limit point of ({,) is a solution to the || - |-dual problem.

B3) Iff) isthe| - |l,-dual vector to f, , then (b — (b/f,) f,.') has a weak*
limit pomt with respect to I -1l and every weak* limit point is of the form
b — () f where f is a solution to the H H dual problem and f' is a || - |-dual

vector to f. Furthermore Av = b — (b/f)f' has a unique solution which is a
best || + |-approximate solution to Av = b.

Proof (1). Since dim(R(4)") << co thereis a k > 0 so that for sufficiently
large n, 1 f.ll” <kl f,l,, = k. Therefore there is a subsqeuence ( fn) and an
f € R(A)* such that lim,_, || fn —flI'=o0.

Proof (2). Letfbeall | limit point of (£,). Then by passing to a sub-
sequence if necessary, we have lim,..|f, — |l = 0. Since |/, <
I/ le = 1 n=1,2,..., by passing to a subsequence if necessary there is a
ze X, [l z|| < 1, such thatfn —¥* z. We show that zis a || - H -dual vector tof
Now 0 < [(zlf) — 11 < I(zlf) — (Sl + 1 l) — (fo' )] < 1GIf) —
LDV + 1 e = FUa 1 e = 1 — fOD + 1 fu — fl,. Since
dim(R(4)*) < oo there is a constant L > 0 so that || f, — fll, < LI f, —FII’,
for # sufficiently large.

Therefore 0 < |(z/f) — 1| < Iz — f)IF) + L1 fu — 1. Tt follows that
0 < I(Z/f) —1 I < hmn-mo |((Z - fn )/f)l + Lhmn»co an f” = 0 since
fo' —®* z and fe R(A)*C Y. Hence (z/f) = 1. But | /| = 1 and 1|zH <1
implies that || z|| = 1, and therefore z is a || - |-dual vector, f’, to f. Since F
is weak* continuous, lim,.e F(f,") = F(f) and f is a solution to the
Il - |[-dual problem:.

Proof (3). This follows in a similar manner as the proof of Theorem 2.
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APPENDIX

To show that |l ;" < 1/n is eventually satisfied in the algorithm we show
that for fixed n

lim b, — Hm F(f{") = O,

Consider therefore the algorithm in Theorem 2 with » fixed, Steps (7},
{8) eliminated, and Step {(4) modified to read

Step (4). If A, = 0, stop since f; is a solution of the dual problem. If
h; 5= 0, go to (5).

Assume that the modified algorithm does not terminate and let p;, = (5/f})
and p == (b/f} where f is a solution of the dual problem. Since p; < p,
i=1,2,.. and

pivi — pi = (Olfis) — Blf)) = A/l fi — el I, — DO > 0,

it follows that (p,) is a monotone sequence bounded above by p (observe that
if h, = F(fy™) = 0, then there is a scalar «; such that 0 <[ f; — o, 1, =
min, || f; — Al |, << 1). Thus there is a real number o such that im,,, p; =
o < p.

Suppose ¢ < p. Since || f; |, = 1, i = 1, 2,... there is a subsequence (ﬁ»m)
converging to some f in R(4)* which implies fi'm — f'. Therefore

’

lim — Lim {h, — i =0
m>w oo

T Gs— Y (e

N

where 1 = F(f"). Now & £ 0, for h = 0 implies f'is a solution of the dual
problem (if fe R(4A)* with || f|i,, = 1 and (b/f) > 0 then fis a solution of the
dual problem if and only if F(f") = 0) and

o= lm p, = lim (blf;,) = (B/f) = p

Friamdeel

which is a contradiction. Therefore | 21, = d > 0. Since hfm — h, it follows
that![ &; |, > dJ2 for m sufficiently large and

V> S — i hi, I > Vo, g, 1 — 1

Therefore 0 <[ o; | < 4/d for m sufficiently large and by passing to a sub-
sequence if necessary we have that there exists an & so that lim,,.., oy = &.
Now '

1= 1M (py, fpiny) = i | £y, — o s, I < lim If,, — M 1

which contradicts the fact that min, | f — Az {], < 1. Hence ¢ = p.
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If (f;) is a convergent subsequence of (f;) and if f = lim,,, /i, then
11, = "1 and (b/f) = p. Therefore #is a solution of the dual problem If the
algorithm terminates at the ith step then F(f;) = 0 which implies that f;
is a solution of the dual problem.
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