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I. h 1ROOl 'CliO\;

Let V be d linear spaL:e, X a normed linear spJL:e, 3:lJ A: " -> X a IlIlear
tr<losformation from V into X. AI~o. let heX -.. R(A) W!l\:re R(A) dt'nt1te5
the range of A. The equation Al -- b lhu.; hJ~ l1\l <;olution ane! we ,h;]11 -.:a!i
the prohkr., pf finding u l'in V such thai

'b - Ai- h - A,.

for all I' ill V the prilllar) {JJ'vhlt)ln. "solution of tile rrimary r'rohlem shall be
called a hnl Qpprrnimale sollilion of fir h. Phelps 16] ha~ shown that ·f X
is a Banach ~race having a predual (i.e.. thert' exis\:' a normed linear spu(e Y
suer. that the dual space of Y, }" .- X) anJ if R(A) is weak' closed then the
nrtmary problem ha~ a solution. In fact (~ee [:l)). if X i~ \II'irth ((JIII'e.\. i e..

~(x -l- y) < I x = J I - I and x p

then the primary problem has at mo~t one splution. The dual prublem. whid'.
always has a ~olution (see [2.4]) consisb of fir.ding a hOlmdeJ lInear
functional i in

O!'orall.\~ N(,·n:

~uch that ! I ~ , and

f(b) - max ((h) .
I~' R(A) J..

f I
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Since in certain instances the solution of the primary problem follows
from the solution of the dual problem we shall investigate algorithms for
solving the dual problem. In fact if (II . lin) is a sequence of strictly convex
norms defined on a normed linear space X and II . II is a norm on X such that
limn_>oo II a lin = II a II for all a in X, then solutions of the dual problem with
respect to [I . II are generated as limit points of sequences of approximate
solutions of the dual problems with respect to [I . lin.

2. DUAL VECTORS

If X is a normed linear space and x E X then for fE x* we write f(x) =
(x/f). The dual norm II . II' of a norm II . lion X is defined to be the usual norm
on X*; i,e., iffEX* then

Ilfll' = sup I(x/f)[.
IlxlH

Furthermore, iffE x* r--I {O} and x E X, then x is called a II . II-dual vector for
fifll xii = 1 and

(x/!) = max I(z/f) I = Ilfl['
ZEX

Ilzll=l

Let X be a Banach space and let 4>: X --->- x** be the canonical embedding
of X in X**, i.e., 4>(x) = x where x(f) = f(x) for allfin X*. This mapping
enables us to identify X with a subspace of X** <,tnd will be used in the
following theorem.

THEOREM 1. (i) If X is a Banach space having a predual M, then each
f E M r--I {O} has a dual vector in X.

(ii) IfX is a strictly convex Banach space having a predual M, then each
f E M r--I {O} has a unique dual vector in X.

(iii) If A: V --->- X is a linear transformation from a linear space V into a
normed linear space X with strictly convex dual and b E X r--I R(A) then the
dual problem has a unique solution.

(iv) Let V be a linear space, X a normed linear space, A: V -+ X a linear
transformation, and assume b EX r--I R(A).

(a) If the primary problem has a solution and if! is a solution of the
dual problem, then there exists a dual vector /' for! such that

Av = b - (bl!)/'

is consistent.
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(b) Ifj is a solution of the dual problem andJ' is any dual vector for J
such that

Av = b - (hIJ)j'

is consistent, then every solution is a solution of the primary problem.

Proof See [l].

3. THE ALGORITHMS

THEOREM 2. Let V he a linear space, X a finite-dimensional linear space
with a sequence ([[ . lin) of strictly convex norms and a norm II . II. Assume that
for each a in Xlimn_?Co II a lin = II a II, and let A: V -- X be a 1-1 linear
transformation such that hEX r--.J R(A). Then the algorithm below generates
a sequence Un) with the following properties:

(1) (In) has at least one limit point.

(2) Every limit point ofUn) is a solution of the II . II-dual problem.

(3) IfIn' is the II . lin-dual vector to In, then (b - (bIJn)Jn') has a II .
limit point and every II . II limit point is of the form b - (hIJ) j' where J is a
solution of the II . II-dual problem and j' is a II . ii-dual vector to j. Furthermore
Av = b - (bIJ)j' has a unique solution which is a best II . Ii-approximate
solution to Av = b.

Step O. Select a fixed basis B = {gl ,... , gk} for {R(A) U by and define
Ie -

F: X -.;. {R(A) U b}..L by F(x) = Lj~l (xlgj) gj .

Step 1. Set i = 0, n = 1 and choose fo E R(A)..L so that lifo U;, = 1 and
(hllo) > O.

Step 2. Compute the II . lin-dual vector of/; , call it j~n.

Step 3. Compute hi = F(f~n).

Step 4. Ifll hi ii' ~ lin let In = /;, and to to (7). Ifnot, go to (5).

Step 5. Find (Xi in C (the complex numbers) such that Ii)'; - (Xihi I!~ ~

Ii)'; - Ahi II~ for all A in C.

Step 6. Let/;+1 = (/; - (Xihi)/(II/; - (Xihi [!~), i = i + 1 and go to (2).

Step 7. Let In' = j;n.

Step 8. Let i = 0, /; = JnlllJn 11~+1 , n = n + 1, and go to (2).

Proof (1). Since dim(X*) < 00 there is a constant k > 0 such that
k [I In Ii' ~. II In II~ = 1 for all n sufficiently large. To see that the same k works
for all large n we observe that given °< e < 1 there is an N > 0 so that for
n ? N, (1 - e) II a 1[' ~ II a II~ ~ (1 + e) II a II' for all a E X* (see [5, p. 104]).
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Letting k = (1 - e) yields the results. Therefore II!n II' :(; 11k for all
sufficiently large n, and (In) has a II . II' limit point.

Proof (2). Let!be a 11'11' limit point of!n' Then there is a subsequence,
Un), such that limj-<ooo!n. = j. We show that (J~) has a II '1llimit point and

, :J I\:J ....

that every limit point is a II . II-dual vector of f. Since II f~; lin; = 1 for all j,
by going to a subsequence if necessary, there is a z in X such that
z = limj-<ooo!~ .

, ,i
Since (f~.lfn) = I it follows that, ,

lim (j~ J1n) = (zlJ) = 1.
j---700 J J

But

II /' II = I! z II = 1

(see [5]). Hence z is a II . II-dual vector to!; let z = /'.

Since F is continuous and II F(J~)II' :(; Ilnj,,

lim F(J~) = F(/,) = O.
j-HX) J

But F(/,) = 0 implies! is a solution of the II . II-dual problem This follows
from the observation that FU') = 0 implies /'e lin {R(A) U b}

Proof (3). Let B = lin{R(A) U b}. Now /' E B, which imp ies that there
is an ex E C and an X o E V such that

exb - Axo = (blJ)/'.

Since! E R(A)J..,

and

Therefore ex = 1 and

Now for any x E V,

(exb - AXol!) = ex(bl!)

(exb - AXolJ) = (bl!)(/'IJ)

= (bl!)·

Axo = b - (blJ)J'.

II b - Axil = II b - Axllll!II'

~ I(b - AxlJ)1

= I(b/!)!

= II b - AXol1

and X o is a best II . II-approximate solution to Av = b.
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The fact that II hi Ii' ::s;; lin is eventually satisfied follows from [1, pp. 11-18]
(see Appendix).

In the special case where A is an m X n matrix the previous algorithm
can be modified to obtain a sequence whose limit points are solutions of the
primary problem.

THEOREM 3. Let Ax = b be an overdetermined system ofm equations in n
unknowns with rank (A) = n. Let Cil . lin) be a sequence ofstrictly convex norms
on em, and suppose there is a norm, II . II, on em such that for each a in em,
limn""oo a 'In = II a II. Then the algorithm below generates sequences (/n) and
(x,,) having the following properties:

(1) (In) has at least one limit point.

(2) Every limit point of(/n) is a solution to the dual problem with respect
to I! .

(3) (xn) has at least one limit point.

(4) Every limit point of (xn) is a solution to the primary problem with
respect to I! . II.

Steps 0-7. Same as Steps 0-7 in Theorem 2.

Step 8. Find the best [2 approximate solution, xn , ofAx = b - (bl!,,)!,,'.

Step 9. If lib - AXn II - (Illlfn II) (blfn) < E for some predetermined
E > 0, take xn = x*, a II . II-best approximate solution of Ax = b, and

!n/!i!n I!' a solution of the II . II-dual problem. Ifnot, go to (10).

Step 10. Let i = O,h = !nlll!n Ij~+1 n = n + 1, and go to (2).

Proof The first two results follow from Theorem 2. Now

and by part (3) of Theorem 2, it follows that by going to a subsequence if
necessary limn->oo (b - (bl!n)!n') = b - (bl!)!' where! is a solution of the
II . II-dual problem and!' is a II . II-dual vector tal Letx** be the solution to
Ax = b - (bl!)!'. Then x** is a best II . ii-approximate solution of Ax = b.

Let an = b - (bl!n)!n' and a = b - (bl!)!'. Then,

II xn - x** Ii = [[(ATA)-l ATexn - (ATA)-l ATex

= II(ATA)-l AT(an - ex)!

::s;; I[(ATA)-l AT II . Ii Cin - ex II.
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Therefore,
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lim Ilxn - x** II :::;; II(ATA)-l AT II lim II (Xn - (X II = o.
n---700 n---">oo

With additional assumptions, the algorithm in Theorem 2 can be extended
to the case where X has infinite dimension. This is the content of the following
theorem.

THEOREM 4. Let V be a linear space, X a Banach space with strictly convex
norms (II . lin) and a norm II . II such that for each a in X, II a II :::;; II a lin n = 1,2,...
and limn_>oo II a lin = II a II. Furthermore, suppose X has a separable predual Y
and A: V -+ X is a 1-1 linear transformation such that R(A) is weak* closed,
R(A)J.. C Y, dim(XIR(A)) < 00, and bE X "" R(A). Then the algorithm of
Theorem 2 generates a sequence (/n) with the following properties:

(1) (In) has a II . II' limit point.

(2) Every II . II' limit point of(In) is a solution to the II . II-dual problem.

(3) !fIn' is the II . lin-dual vector to In, then (b - (blln)ln') has a weak*
limit point with respect to II . [I and every weak* limit point is of the form
b - (bll)!', where I is a solution to the II . II-dual problem and!' is a II . II-dual
vector to /. Furthermore Av = b - (bll)!' has a unique solution which is a
best II . II-approximate solution to Av = b.

Proof (1). Since dim(R(A)J..) < 00 there is a k > 0 so that for sufficiently
large n, Illn II' :::;; k Illn II~ = k. Therefore there is a subsqeuence Un) and an
IE R(A)J.. such that limi~oo Il/n. -III' = o. ',

Proof (2). Let I be a II . Ii' limit point of Un)' Then by passing to a sub­
sequence if necessary, we have limn_>oo Illn -III' = O. Since Il/n'll:::;;
Illn' lin = 1 n = 1,2,... , by passing to a subsequence if necessary there is a
z E X, II z II :::;; 1, such that In' -+W* z. We show that z is a II . II-dual vector to /.
Now 0 :::;; I(zll) - 1 I :::;; I(zll) - Un'II)1 + IUn'll) - (In'lln) I :::;; I(zll) ­
Un'll) I + II In - Illn II In' lin = I((z - In')II) [ + II In - III~ . Since
dim(R(A)J..) < 00 there is a constant L > 0 so that Illn -/II~ :::;; L Illn -III',
for n sufficiently large.

Therefore 0 :::;; I(zll) - 1 I :::;; I((z -In')II)1 + L Illn -III'. It follows that
o :::;; I(zll) - 1 I :::;; limn~oo I((z -In')!!)1 + L Iimn~oo II In -III' = 0 since
In' -+w* Z and IE R(A)J.. C Y. Hence (zll) = 1. But illll' = 1 and II z II :::;; 1
implies that II z II = 1, and therefore z is a II . II-dual vector,!" to /. Since F
is weak* continuous, limn~ooFUn') = FU') and I is a solution to the
II . II-dual problem.

Proof (3). This follows in a similar manner as the proof of Theorem 2.
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ApPENDIX
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To show that Ii hi II' ~ lin is eventually satisfied in the algorithm we show
that for fixed n

lim hi = lim F(f;n) = 0.
I->CO 1--7GO

Consider therefore the algorithm in Theorem 2 with n fixed, Steps (7),
(8) eliminated, and Step (4) modified to read

Step (4). If hi = 0, stop since /; is a solution of the dual problem. If
hi =1= 0, go to (5).

Assume that the modified algorithm does not terminate and let Pi = (bl/;)
and p = (bl!) where j is a solution of the dual problem. Since Pi ~ p,

i = 1,2,... and

PHI - Pi = (bl/;+1) - (bl/;) = O/lt/; - (x/1i il~ - l)(blj;) > 0,

it follows that (Pi) is a monotone sequence bounded above by p (observe that
if hi = F(/;'n) =F 0, then there is a scalar (Xi such that 0 < - (Xihi;, =

min, !If:: - 'Ahi I!~ < 1). Thus there is a real number a such that limi_>a: Pi =
(]" ~ p.

Suppose a < p. Since 11f:: II~ = 1, i = 1,2,... there is a subsequence (f, )
converging to somejin R(A)l- which impliesj: --+ 1'. Therefore m

m

Ii; Ii; ,

lim II L (f::' Igj) gj - L (f'lgj) gj II = lim Ihi - h II~ = °
m·->cc > j=l m j=l Ln m---7r:f) m

where h = F(f'). Now h =1= 0, for h = °implies j is a solution of the dual
problem (ifjE R(A)l- with IlfIi~ = 1 and (bl!) > 0 thenjis a solution of the
dual problem if and only if F(f') = 0) and

a = lim Pi = lim (blf:: ) = (b/f) = p
111-H::f) 1?t m-)CC m

which is a contradiction. Therefore II h II~ = d > O. Since him --+ h, it follows
that!1 hi II'n > dl2 for m sufficiently large and

m

Therefore °< I (Xi 1 < 41d for m sufficiently large and by passing to a sub­
sequence if necessa~ywe have that there exists an & so that limmfo:J (Xi = &.
Now '"

1 = lim (Pi Ipi +1) = lim 11f:: - (Xi hi II~ ~ lim Ii/; - 'Ahi II~
m"""'X m m In--7CO m m m J11 __~OO mm

which contradicts the fact that min, Ilj - 'Ah II~ < 1. Hence (J = p.
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If (/; ) is a convergent subsequence of (/;) and if ! = limm ..,.",/; then
II!II~ = ml and (bl!) = p. Therefore/is a solution of the dual problem~Ifthe
algorithm terminates at the ith step then F(f;') = 0 which implies that /;
is a solution of the dual problem.
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